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 Recently, the acoustic noise reduction problem is treated by two-

channel forward blind source separation (BSS) techniques combined 

with normalized least mean square algorithm (T-FNLMS). The T-

FNLMS algorithm shows good performances in two-channel 

convoluted dispersive mixture. In this paper, we propose new BSS 

structure based on the two-channel sparse normalized least mean 

square algorithm (TS-NLMS). The TS-NLMS algorithm is proposed 

exactly when the convoluted mixing system is characterized by 

sparse impulse responses. To confirm the good performance of this 
proposed algorithm, intensive experiments are done in acoustic noise 

reduction. 
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I. Introduction 

Acoustic noise reduction (ANR) and speech quality enhancement (SQE) are often used in many applications in 

telecommunication systems such as hand-free telephony. In order to improve the robustness of ANR and SQE 

systems in such noisy environments, we can use different approaches [1─2]. Several one-, two- and multi-

channel sensors techniques are proposed to resolve this problem [3─5]. Recently, blind source separation (BSS) 

technique has been used to separate the speech and acoustic noise signal in convolutive mixing.  

Adaptive filtering algorithms are frequently employed in signal processing, telecommunications and many other 

applications because of its simplicity and robustness [6─7]. Recently, a very important amount of papers have 

investigated in ANR and SQE by using different adaptive filtering algorithms combined with the two-channel 

blind source separation structures (BSS) [8─11]. These approaches are proposed to improve the behavior of 

ANR and SQE systems in terms of speed convergence, steady state (misadjustment). 

 In two-channel BSS algorithms, we can use forward-and-backward structures which are simples and efficient 

[8, 11]. We note that, the two-channel forward BSS is important structure used to enhance the speech signal but 

with a distortion. Full analyses of this method with and without post-filters are well described in [8─17]. We 

note also that, all of these structures/algorithms require manual-or-automatic voice activity detector system 

(VAD) to cancel the acoustic noise components at the outputs [10─17]. 

In this paper, we consider a two-channel convolutive mixing system. Several forward-and-backward adaptive 

fultering algorithms have been proposed in time and frequency domains [8, 10]. These adaptive filtering BSS 

algorithms are used to identify the dispersive impulse responses (IRs) of two-channel convolutive mixture. It 
has been proven that the adaptive identification of unknown dispersive IR is equivalent to the problem of BSS 

technique [8─17]. In [14─18], the subband BSS algorithms have been proposed to improve the convergence 

rate. Recently, it was proposed efficient subband implementation and new variables step-sizes approaches of the 

two forward-and-backward BSS structures to improve their performances [14─19].  

The two-channel forward NLMS algorithm is important solution to separate speech signal from noisy 

observations. This algorithm showed a good performance in two-channel convolutive mixing model with 

dispersive IRs. However, the main drawback of this algorithm is their poor performance when the IRs are 
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sparse. This inconvenience is well observed in transient phase. To overcomes these problems, this algorithm has 

to consider the following notes, (i) need to adapt a relatively long filter and (ii) unavoidable adaptation noise 

occur at the inactive region of the tap weights [20]. In this paper, the sparse version of two-channel forward 

Sign-Sign NLMS algorithm is proposed. The proposed algorithm based on normalized step-sizes and 

proportionate techniques. This algorithm allows improving the convergence speed and the misadjustement 

performances. 

This paper is presented as follows: in section 2, the two-channel mixing and separating system is detailed. In 

section 3, we present the proposed two-channel sparse forward NLMS algorithm (TS-FNLMS). The simulation 

results are presented in section 4 and finally the conclusion of this paper is presented in section 5. 

II. Two-Channel Mixing and Separating Systems 

In this section, we present the two-channel convoluted mixing model that is considered as the problem in this 

study. After, we will present the two-channel forward NLMS algorithm. 

II.1. Two-Channel Convolute Mixing System 

The two-channel convoluted mixing model is shown in Fig. 1 [6-13]. 
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Figure 1. Two-channel convolutive mixture, 

(a) full model and 

(b) simplified model [6-13] 

 

In model presented in Fig. 1 (a), we consider a first source of speech s(n) and a second of the noise b(n). At the 

output of this model, we observe two convolutive mixture signals of these two point sources with impulse 

responses  nh11 ,  nh22 ,  nh12  and  nh21 . The observed signals are given by: 

         nh*nbnh*nsnp 21111   (1) 

         nh*nsnh*nbnp 12222   (2) 

where (*) is the convolution operation,  nh11  and  nh22  are  assumed  to  be  identity; which represents the 

direct acoustic path of each direct channel separately (  nh11 =  nh22 = δ(n)) and  nh12  and  nh21  are the 

cross-coupling effects between the channels [6-13]. In the case of simplified model Fig. 1 (b), the two equations 

(1) and (2) can be rewritten as follows: 
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       nh*nbnsnp 211   (3) 

       nh*nsnbnp 122                                                   (4) 

II.2. Two-Channel Forward Structure 

In this section, we present the forward blind source separation (BSS) structure and we give its full formulation 

and optimal solutions in the time-domain. This structure is intensively used in acoustic noise cancellation [10, 

16-19]. The two-channel forward BSS structure is presented in Figure 2.At the output of this structure, the 

estimated speech signal  nu1  and  nu2  are estimated by the following relation:  

       nw*npnpnu 21211                   (5) 

       nw*npnpnu 12122                                     (6) 

 nw12

 nw21



 np2

 np1

 ns2

 ns1)n(PF1

)n(PF2

 nu 2
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Figure 2. Two-channel Forward structure. 

The optimal solutions for the two adaptive filters are given as 

(n)h(n)w 21

opt

21 
                                                    

   (7) 

(n)h(n)w 12

opt

12 
                                                  

   (8) 

By inserting (3) and (4) in (5) and (6) respectively and considering the optimal solutions for the two adaptive 

filters, see (7) and (8). The output signals relations of this structure can be rewritten as follows: 

          nh*nhn*nsnu 21121                                        (9) 

 

          nh*nhn*nbnu 12212 
                                       

(10) 

The FBSS structure presents the disadvantage of distorting the output signals. It was shown theoretically that the 

correction of the distortions is possible thanks to the equalization of the output signals by post-filtering [10, 11], 

therefore, we can use the two post-filtering  nPF1  and  nPF2  in the output of this structure to compensate this 

distortion and these PFs are ideally given by: 

   
     nh*nhn

1
nPFnPF

2112

21




        

    (11) 

In this paper, we do not interest on the post-filters estimation and theirs introduced distortion on the output 

signal. 

A. Two-channel forward NLMS algorithm (T-FNLMS) 

In this study, we note that the coefficients of both separation filters (n)w12 and (n)w21 are adapted from the 

Normalized Least Mean Square algorithm (NLMS). The adaptation relations of both adaptive filter (n)w12 and

(n)w21 are given by the following expressions: 
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where T

1111 1)]L-(np , ... 1),-(np (n),[p(n) p  and T

2222 1)]L-(np , ... 1),-(np (n),[p(n) p   
are two 

vectors that contains the noisy observation sample (n)p1 and (n)p2 respectively. The two parameters 12μ and  

21μ  are the step sizes of both adaptive filters (n)w12 and  (n)w21 respectively, which must be chosen between 0 

and 2 to achieve convergence of adaptive filters [10]. We can notice that the forward structure, which has been 

described previously, use an optimal assumption.  

(n)h(n)w 21

opt

21 
   

and   (n)h(n)w 12

opt

12  )               

This optimal solution is got in practice thanks to the adaptation control of both adaptive filters ( (n)w21 and

(n)w12 ). This adaptation is often a voice activity detector (VAD) system. This adaptation is controlled  as 

follows: the adaptive filter (n)w21 is adapted only during the noise presence periods, while the filter (n)w12 is 

adapted only during the voice activity presence periods. 

III. Proposed Two-Channel Sparse FNLMS Algorithm 

In proposed algorithm, the adaptive step-sizes are calculated from the last estimate of the filter coefficients in an 

efficient way that step-size is proportional to the size of the filter coefficients. This is resulted to adjust the 

active coefficients faster than the non-active ones. This algorithm is proposed to improve the convergence rate 

of the adaptive filters tend their optimal solutions, exactly in sparse impulse responses system [20].  

In this section, we present the proposed sparse version of two-channel forward NLMS algorithm. The general of 

the proposed TS-FNLMS algorithm is presented in figure 3. 

The TS-FNLMS algorithm assigns an individual step-size to each filter coefficient. The larger coefficient 

receives a larger increment, thus increasing the convergence rate of coefficient. The active coefficients are 

adjusted faster than non-active coefficients (small or zero coefficients), so that proposed TS-FNLMS algorithm 

converges faster than non-proportionate version (T-FNLMS) for sparse impulse responses, when only a small 

percentage of coefficients is significant [20]. 

In the proposed TS-FNLMS algorithm, we propose to use the same updating formulas of two adaptive filters 

 n12w and  n21w  obtained by T-FNLMS algorithm but modified as following: 
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Figure 3 . General diagram of two-channel sparseforward NLMS algorithm (TS-FNLMS) 

 

Where  n21Q  and  n21Q  represent the diagonals step-size control matrix (L x L) that are introduced here to 

determine the step-sizes of each filter coefficient and are dependents on the specific algorithm. The two 

diagonals step-size control matrix  n21Q  and  n21Q are given by 
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The diagonals elements of  
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Where α is small number take its values between –1 and 1, and φ  is a very small positive number to avoid 

division by zero, especially at the beginning of adaptation where all the taps of the filter are initialized to zero. 

 
1

n12w  and  
1

n12w represents the 1-norms of the adaptive filters  n12w  and  n21w  respectively, which are 

defined as,   
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At initialization, since all the taps of the filters start with zeros, vectors  n2p  and  n1p  are multiplied by a 

quantity equal   L21  . This later implies and suggests that the regularization parameter for the TS-FNLMS 

algorithm should be taken as:    nlms L21    . It can be noticed that, the proposed TS-FNLMS algorithm 

is the same as non-proportionate T-FNLMS algorithm when α = -1. 

Basing on update equations of the two adaptive filters and the diagonal elements presented in (16) and (17), 

when     LL2121 nn  I     Q     Q , i.e. (L×L) identity matrix, we obtain the T-FNLMS algorithm. In comparison to 

the T-FNLMS algorithm when the IRs are sparse, the proposed algorithm has very fast initial convergence. 

IV. Analysis of Simulation Results 

In this section, the simulation results of classical T-FNLMS and proposed TS-FNLMS algorithms described 

previously are presented. In order to qualify the performance of all proposed algorithms, we are only interested 

on the estimated speech signal that we get in the first output (i.e.  nu1 ) of the second adaptive filter (i.e. 

 n21w ).In this simulations part, we consider the simplified two-channel convolutive mixing model presented in 

Figure 1-b-, and the two statistically independent source signals to generate the two noisy signals at the output 

[10-19]. These two-point sources are specified as:  ns is a speech signal phonetically equilibrated, and  nb is a 

punctual noise. With sampling frequency kHz 8Fs   

In the two-channel mixing model, we have used two sparse impulse responses  nh12
and  nh 21

 that are 

convoluted with the original signals to generate the two noisy signals  np1  and  np2
. The length of sparse 

impulse responses is L=512. The noisy signals  np1  and  np2  are generated by this model, with input SNR 

equal -6 dB in the mixing signals  np1  and  np2 . In table 1, we have summarized all selected optimal 

parameters of classical and proposed algorithms. 

In order to evaluate the convergence time and SM values properties of proposed TS-FNLMS algorithm in 

comparison with T-FNLMS algorithm, we have reported in Figures 4, 5 and 6, the SM evolution in the same 

simulation.  

(i) This SM criterion is evaluated according to the following expression: 
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 Each point of this figure corresponds to a smoothing of 256 consecutive frames. 

 

 

 

 

Table 1: Simulation parameters values of algorithms, with 9.0µµ 2112  , L=512 and dB 6SNRSNR 21  . 

Algorithms 
Classical T-

FNLMS 

Proposed TS-

FNLMS 

Parameters 

values 
6

nlms 10
 

   nlms L21     
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610φ ,  

α = -0.5
 

 

 
Figure 4 . SM evaluation of adaptive filter  n21w  obtained by T-FNLMS and proposed TS-FNLMS algorithms 

with 2.0µµ 2112  . 

  

Figure 5. SM evaluation of adaptive filter  n21w  obtained by T-FNLMS and proposed TS-FNLMS algorithms 

with 5.0µµ 2112  . 

 
 

Figure 6 . SM evaluation of adaptive filter  n21w  obtained by T-FNLMS and proposed TS-FNLMS algorithms 

with 9.0µµ 2112  . 
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Table 2: Final SM values and convergence time obtained by: T-FNLMS and proposed TS-FNLMS 

algorithms with 9.0µµ 2112  . The bold values represent the best ones. 

Algorithms 
Classical 

T-FNLMS 

Proposed  

TS-

FNLMS 

SM average values 

(dB) 
-38.52 -50 

Convergence time 

(s) 
10,1 5,4 

From Figures 4, 5 and 6, we note the good convergence speed performance of the proposed TS-FNLMS 

algorithm compared with classical version. According to the averages results of Table 2, we observe a fast 
convergence time of proposed algorithm (5,4 seconds). However, the other T-FNLMS algorithm suffer from 

slow convergence time especially in the very noisy observations with sparse impulse (12,1 seconds). Basing on 

the same results of Table 2, we note that the proposedTS-FNLMS algorithm keeps the good convergence speed 

time and small steady-staes values (-50 dB) in comparison with otheralgorithm (-38.52 dB). 

For evaluate the quality of estimated speech signal, we have done other simulations based on cepstral distance 

(CD) and Segmental signal-to-noise ratio (SegSNR) criteria.  

(ii) The CD criterion is evaluated according to the following expression 

      




U

1p

2

1dB p,Ulogp,SlogDC ISFT

 

(23)

 where  ISFT  denote the inverse-short-Fourier-transform.  p,S   and  p,U1   are, respectively, the short-

Fourier-transform (SFT) of the original speech signal  ns and the enhanced output  nu1 . 

(i) The Segmental SNR criterion is given by the following relation: 
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(24)

 
The parameter U represents the number of sample needed to obtain the average values of the output SNR. The

 VAD is a voice activity detector that detects the presence/absence of only speech- and noise-sequences. 

We have done several experiments according to the input SNR (SNR = -6, 0 and 6), the type of noise (white, 

USASI, babble and street) with L=512. We note that the obtained results of CD and SegSNR criteria are 

reported on Tables3 and 4. 

Table 3:  Output SNR evaluation for T-FNLMS and proposed TS-FNLMS algorithms. The bold values 

represent the best ones 

Noise type 
Input SNR 

(dB) 

CD values in dB 

Classical T-

FNLMS 

Proposed 

TS-FNLMS 

White 

-6 -6,8 -7,3 

0 -7,01 -7,47 

6 -7,75 -8,69 

USASI 

-6 -5,95 -7,14 

0 -6,51 -7,22 

6 -6,96 -8,33 

Babble 

-6 -6,61 -7,45 

0 -6,69 -7,52 

6 -7,7 -8,86 

Street 

-6 -6,42 -7,19 

0 -7,09 -8 

6 -7,33 -8,56 
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Table 4: Overall CD evaluation for T-FNLMS and proposed TS-FNLMS algorithms. The bold values represent 

the best ones 

Noise type 
Input SNR 

(dB) 

SegSNR in dB 

Classical T-

T-FNLMS 

Proposed 

TS-FNLMS 

White 

-6 46,75 49 

0 48,22 50 

6 50,02 53 

USASI 

-6 45,38 48 

0 48,69 50 

6 49,79 52 

Babble 

-6 44,01 48 

0 45,08 51 

6 48,89 52 

Street 

-6 45,03 48 

0 46,93 50 

6 49,25 52 

 

From the obtained results presented in Table3, we have well observed the equality in the convergence to the 

optimum of classical and proposed algorithms in different cases. We note the good behavior of proposed TS-

FNLMS algorithm compared with other ones. This behavior is noted with different situations, noisy types (i.e. 

white, USASI, babble and street noises) and different input SNR (i.e. SNR = -6, 0 and 6 dB). We conclude that 

the proposed TS-FNLMS algorithm had given the smaller CD values, which means less distortion on the 

estimated speech signal. 

Basing on the presented results in Table4, firstly we can see that the output SNR characteristics are directly 

proportional with the input SNR (i.e. the output SNR decreases/increase with the input SNR). We have also 

observed the weak output SNR values of the classical algorithm in comparison with TS-FNLMS algorithm. 

Finally, we conclude that the segmental SNR criterion proves the good performance of the proposed TS-

FNLMS algorithm compared whit classical for acoustic noise reduction and speech quality enhancement. 

V. Conclusion 

In this study, we have proposed the two-channel sparse forward NLMS algorithm (noted: TS-FNLMS) which 

allows extracting the speech signal from very noisy observed signals. This algorithm is mainly proposed exactly 

to improve the convergence speed in initial phase, when the two-channel convolutive mixing model is 

characterized by sparse impulses responses. Intensive simulations are carried out to validate the performance of 

the new proposed algorithm. Basing on the SM values and convergence time results obtained by SM criterion, 

we have noted the fast convergence speed in initial phase of proposed TS-FNLMSalgorithm compared to the 

non-proportionate algorithm. The superiority of proposed algorithm in term of estimated speech quality is 
proven by CD and SegSNR. Finally, all these objective results have proven the efficiency and the superiority of 

the proposed algorithm in terms of convergence rate and output speech quality compared with classical 

algorithm in two-channel sparse system. 
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