Numerical Modelling of the Behaviour of the Cervical Spine under the Effect of a Flexion / Extension

  • Nadir Damba 2Laboratory of Applied Biomechanics and Biomaterials (LABAB), B.P: 1523 El Mnaour, ENPO-MA, 31000, Oran, (Algeria).
  • Abdellatif OUDRANE Department of Science and Technology, Faculty of Science and Technology, Ahmed Daria University of Adrar, 01000, (Algeria)
  • Benaoumeur AOUR Laboratory of Applied Biomechanics and Biomaterials (LABAB), B.P: 1523 El Mnaour, ENPO-MA, 31000, Oran, (Algeria).
  • MOHAMMED SALAH BENNOUNA Laboratory of Applied Biomechanics and Biomaterials (LABAB), B.P: 1523 El Mnaour, ENPO-MA, 31000, Oran, (Algeria).
  • N BELKAHELLA Laboratory of Applied Biomechanics and Biomaterials (LABAB), B.P: 1523 El Mnaour, ENPO-MA, 31000, Oran, (Algeria).
Keywords: Biomechanics, Cervical Spine, Intervertebral Disc, FEM, Hyper elasticity, Ligaments

Abstract

Numerical simulation is today widely used in several fields of engineering, and research undertaken for more than 20 years concerning the geometric and mechanical modeling of the spine gradually leads to clinical applications of major interest. Indeed, the in vivo and in vitro evaluation tools pose a certain number of limitations: non-standardized procedures and inter-specimen variability for in vitro tests, medical, ethical constraints, and inter-individual variability for in vivo. These limitations are actually obstacles to comparison. It is notably within the framework of implant comparisons that the methods of structural calculation, and more particularly finite element modeling, widely used in classical mechanics, find their usefulness. in this context, this present work consists in developing a three-dimensional model of the cervical spine, in order to subsequently optimize the fitting of disc prostheses

References

Basa S, Balasubramanian V. “CT based three dimensional finite element model of cervical spine,” International conference on biomedical and pharmaceutical engineering. Research Publishing Services. 2006.

Barker,J.,Chandrashekar,N.,Cronin,D.S., “High Rate Behaviour of the Cervical Spine Segments in Flexion and Extension” (M.Sc.Thesis).UniversityofWaterloo, Canada. 2012

Harrouz A, Tahiri, F. Bekraoui, F. Boussaid I. Modelling and Simulation of Synchronous Inductor Machines. Algerian Journal of Renewable Energy and Sustainable Development, 2019, 1(1),8-23. https://doi.org/10.46657/ajresd.2019.1.1.

Zhang QH, Teo EC, Ng HW, Lee VS. “Finite element analysis of moment–rotation relationships for human cervical spine”. Journal of Biomechanics vol 39, pp.189. 2006.

Wheeldon JA, Stemper BD, Yoganandan N, Pintar FA.” Validation of a finite element model of the young normal lower cervical spine,” Annals of Biomedical Engineering; vol 36, pp. 1458–1469. 2008

Kallemeyn NA, Tadepalli SC, Shivanna KH, Grosland NM. “Interactive multi-block approach to meshing the spine” Computer Methods and Programs in Biomedicine; vol 95, pp. 227–235. 2009

Yoganandan. N., Kumaresan. S., Voo. L., Pintar. FA. “Finite element application in human cervical spine modeling”. Spine vol 21, pp.1824-1834. 1996

Wagnac.E., Aubin. C.E., El-Rich. M. “Finite element modeling of the lumbar spine ligaments for virtual trauma simulations.” Med Eng Phys, MEP, doi:11-00430, 2011

Panjabi, M. M.,Kifune, M.,Liu, W.,Arand, M.,Vasavada, A., & Oxland, T. R.. “Graded thoracolumbar spinal injuries: development of multidirectional instability”. Eur Spine J, vol 7, pp.332-339. 1998

El-Rich. M., P.-J. Arnoux., et al. "Finite element investigation of the loading rate effect on the spinal load-sharing changes under impact conditions." Journal of Biomechanics, vol 42, pp1252-1262. 2009

Luce. F., “Contribution à l'amélioration du réalisme d'un modèle multi-corps flexibles de chirurgie pour le traitement de la scoliose. Institut de génie biomedical,” École Polytechnique de Montréal. Maîtrise ès sciences appliquées 137. 2004

Zheng. Z. M., B. S. Yu., et al., “Effect of iliac screw insertion depth on the stability and strength of lumbo-iliac fixation constructs: an anatomical and biomechanical study”., Spine, vol 34, pp.565-572. 2009

Belatrache D, Harrouz A Abderrahmane A, Manaa S Numerical Simulation of a Pseudo Plastic Fluid Through Sudden Enlargement Algerian Journal of Renewable Energy and Sustainable Development, 2019, 1(1),92-98. https://doi.org/10.46657/ajresd.2019.1.1. 9.

Kim YC, Cui JH, Kim KT, et al. “Novel radiographic parameters for the assessment of total body sagittal alignment in adult spinal deformity patients”. J Neurosurg Spine 1-8 May 2019 doi: https:// org/10.3171/2019.3

Tang JA, Scheer JK, Smith JS, et al. “The impact of standing regional cervical sagittal alignment on outcomes in posterior cervical fusion surgery”. Neurosurgery vol 76: pp. 14-21. 2015

Steinmetz MP, Stewart TJ, Kager CD, et al. “Cervical deformity correction”. Neurosurgery; 60 (1 Supp1 1):S90-7. 2007

Wu T, Wang B, Ding C, Meng Y, Lou J, Yang Y, Liu H. “Artificial cervical discreplacement with the prestige-LP prosthesis for the treatment of noncontiguous 2-level cervical degenerative disc disease: a minimum 24-month follow-up”. Clin Neurol Neurosurg. vol, 152 pp.57–62. 2017

Li Y, Fogel GR, Liao Z, Tyagi R, Liu W. “Prosthesis and hybrid strategy consideration for treating two-level cervical disc degeneration in hybrid surgery”. Spine (Phila Pa 1976).;vl 43, pp.379–87. 2018

Mo Z, Li Q, Jia Z, Yang J, Wong DW, Fan Y. Biomechanical consideration of prosthesis selection in hybrid surgery for bi-level cervical disc degenerative diseases. Eur Spine J. vol 26, pp.1181–90.2017.

Lee SH, Im YJ, Kim KT, Kim YH, Park WM, Kim K. “Comparison of cervical spine biomechanics after fixed- and mobile-core artificial disc replacement: a finite element analysis”. Spine (Phila Pa 1976).vol 36, pp.700–8. 2011

Rong X, Wang B, Ding C, Deng Y, Chen H, Meng Y, Yan W, Liu H. “The biomechanical impact of facet tropism on the intervertebral disc and facet joints in the cervical spine.” The spine journal : official journal of the North American Spine Society, vol 17, pp.1926–31. 2017

Shi S, Liu ZD, You WJ, Ouyang YP, Li XF, Qian L, Zhong GB. “Application of a stand-alone anchored spacer in noncontiguous anterior cervical arthrodesis with radiologic analysis of the intermediate segment”. Journal of clinical neuroscience: official journal of the Neurosurgical Society of Australasia. pp. 25:69–74. 2016

Saifi C, Fein AW, Cazzulino A, Lehman RA, Phillips FM, An HS, Riew KD. “Trends in resource utilization and rate of cervical disc arthroplasty and anterior cervical discectomy and fusion throughout the United States from 2006 to 2013.” The spine journal: official journal of the North American Spine Society.;vol 18, pp.1022–9. 2018

Hisey MS, Zigler JE, Jackson R, Nunley PD, Bae HW, Kim KD, Ohnmeiss DD. “Prospective, randomized comparison of one-level Mobi-C cervical Total disc replacement vs. anterior cervical discectomy and fusion: results at 5-year follow-up”. Int J Spine Surg, vol 10, pp.10. 2016

Faizan A, Goel VK, Biyani A, Garfin SR, Bono CM. “Adjacent level effects of bi level disc replacement, bi level fusion and disc replacement plus fusion in cervical spine--a finite element based study.” Clin Biomech (Bristol, Avon).vol 27, pp. 226–33. 2012

LiuB, Zeng Z,Van Hoof T, Kalala JP, Liu Z,WuB “Comparison of hybrid constructs with 2-level artificial disc replacement and 2-level anterior cervical discectomy and fusion for surgical reconstruction of the cervical spine: a kinematic study in whole cadavers.” Med Sci Monit vol 2, pp.1031–1037. 2015

Park J, Shin JJ, Lim J “Biornechanical analysis of disc pressure and facet contact force after simulated two-level cervical surgeries (fusion and arthroplasty) and hybrid surgery.” World Neurosurg. 2014. doi:10.1016/j.wneu.2014.06.013

Gandhi AA, Kode S, DeVries NA, Grosland NM, Smucker JD, “Fredericks DC Biomechanical analysis of cervical disc replacement and fusion using single level, two level, and hybrid constructs.” Spine vol 40, pp. 1578–1585. 2015 doi:10.1097/BRS. 0000000000001044.

Chung T, Hueng D, Lin S “Hybrid strategy of twolevel cervical artificial disc and intervertebral cage biomechanical effects on tissues and implants. Medicine” 2015. doi:10.1097/MD. 0000000000002048.

Published
2019-12-15
How to Cite
Damba, N., OUDRANE, A., AOUR, B., BENNOUNA, M. S., & BELKAHELLA, N. (2019). Numerical Modelling of the Behaviour of the Cervical Spine under the Effect of a Flexion / Extension. Algerian Journal of Renewable Energy and Sustainable Development, 1(02), 144-153. Retrieved from https://ajresd.univ-adrar.edu.dz/index.php?journal=AJRESD&page=article&op=view&path[]=43
Section
Articles